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Abstract. The duality transformation is given for the gauge invariant random Potts model 
on a square lattice. JLLuLIiz invariance and duality properties of the partition function are 
used to demonstrate the existence of a frustration-dissociation phase transition in the 
ground state at a critical concentration of ferromagnetic bonds. The phase diagram is 
obtained with the aid of an annealed approximation. 

1. Introduction 

The gauge symmetries of random Ising and xy models in two and  three dimensions 
have been discussed by various authors [ l ,  2,3]. The frustration function, introduced 
by Toulouse [4], provides an  elegant, gauge invariant description of the relevant disorder 
in such systems [l]. The quenched partition function is found to depend only on the 
distribution of frustrations, and may be written as an annealed partition function in 
the presence of a plaquette coupling term, the limit of infinitely strong plaquette 
couplings fixing a given configuration of t'rustrations [ l ,  21. In the case of the two- 
dimensional random Ising model, the duality transformation performed on the partition 
function (before taking the limit of infinitely strong plaquette couplings) provides a 
way of expressing the partition function in the presence of n frustrations in terms of 
an n-point correlation function of the unfrustrated, zero-field Ising model. 

Schuster [ 5 ]  has noted that in this case, the probability weights of the different 
frustration configurations in the quenched average may be similarly expressed in terms 
of the correlation functions of the dual unfrustrated model, where the temperature is 
now a function of the concentration of ferromagnetic bonds, x. He has shown that a 
phase transition with a local order parameter takes place in the frustration system at 
some concentration x,. One finds x, < xo, where xo is the concentration at which the 
ferromagnetic transition is destroyed. Thus, two qualitatively different types of disor- 
dered state at T = 0 are predicted for the random ( + I )  Ising model in two dimensions. 

In this paper the above treatment is generalised to the q-state vector Potts model. 
An appropriate frustration function is defined, which for q = 2 is equivalent to that of 
Toulouse [4]. The duality transformation on the partition function in the presence of 
n frustrations gives the n-point correlation functions of the unfrustrated Potts model 
on the dual lattice. In the appendix the duality transformation is given in detail for 
an  annealed representation of the frustrated partition function, with plaquette coupling 
terms. 
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The critical concentration of ‘ferromagnetic’ bonds, x,, where the frustration- 
dissociation transition occurs, is found to be 

which reduces to Schuster’s result [ 5 ]  for q = 2. It should be noted that this transition 
becomesjrsr order for q 3 4. To obtain an annealed approximation to xo, the concentra- 
tion at which the order-disorder transition in the random q-state vector Potts model 
is depressed to T = 0, we have performed an  exact de-decoration transformation on a 
decorated lattice Ci la Syozi [ 6 ] .  This calculation turns out to be exactly equivalent to 
that of Sarbach and Wu [7] and yields 

Xg = I( 1 + q - 1 ’ 2 ) .  

Comparison with the Monte Carlo results of Vannimenus and Toulouse [8] for the 
Ising model shows that the annealed approximation to xo is yet lower than the numerical 
result for the quenched case, so that the possibility of a frustration-unbinding transfor- 
mation in the ordered phase of the random Potts system seems to be ruled out. On 
the other hand, re-expressing the probability weights in the quenched average for the 
free energy in terms of n-point correlation functions, we see that the free energy is 
singular at x = x,. This fact has already been pointed out by Schuster [ 5 ] .  We would 
like to underline, however, that this singularity persists at all temperatures, and is the 
analogue as a function of x, of the Griffiths singularities [9], encountered in random 
systems at the critical temperature of the pure system, and which persist at all concentra- 
tions. 

2. The model 

Consider the general Z,  symmetric Hamiltonian [ lo ,  111 

where S, = exp[( f r i /q )m,] ,  m, = 1 , 2 , .  . . , q. If we choose J :  = J e x p ( 2 r i r y p / q ) ,  r,, = 
0, .  . . , q - 1, we obtain the random gauge invariant Potts model [12, 131. The pure 
Potts model is the case where all riJ =0 ,  and the 2, clock model is obtained when 
J” = 0 for p f 1. The partition function for the random Potts model is then, 

where K = PJ ,  A ,  = e x p ( 2 r i r y / q ) .  Z K  is invariant under the set of local transformations 

Al, = M,A,M,* 

M ,  = exp(2riA,/q) A ,  = O ,  . . . , q - 1 

and the Hamiltonian is invariant under the transformations (3)  with 

(3) 
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We define the gauge invariant plaquette functions [ 14, 151 

A, = n A, = exp(2 r i rp /q )  
( I J ) < P  

rp = mod 1 r!, rp = 0, . . . , q - 1. 
(V)<P 

A plaquette is said to be frustrated for rp # 0, [16]. 

2.1. Duality transformations 

The duality transformations for Z,  symmetric models on a square lattice were given 
by Wegner [17]t. Using his results we immediately find the following duality relation 
for the partition function in the presence of a frustration configuration specified by 
{ r p } ,  normalised by the partition function in the absence of frustrations: 

The correlation function is that of a uniform Potts model on the dual lattice, with 
coupling constants given by 

( 7 )  
d K (e - l ) ( e  - l ) = q  

and rp are the frustrations at the plaquettes p dual to the sites i. We can express the 
correlation function in a more familiar form, if we take, e.g., the case of two frustrations 
at the plaquettes 1 and  2, with rl = - rz  = r. Then 

the two-point correlation function of the Potts model. We give an  alternate derivation 
of the duality relation in the appendix using the graphical expansion of the partition 
function. From there we learn that there is a further symmetry of the partition function, 
namely, that ZK { rp = - r,, r,< = 0, s f p ,  q }  does not depend explicitly on the values of 
rp. Thus 

1 
- - ( @ s , , s 2 - 1 ) k  = 
4 - 1  

ZK{r ,  = - r 2 ;  rp = O ; p  f 1,2} 
Z , { r = O }  ( 9 )  

2.2. Quenched averages 

The gauge invariance of the plaquette functions can be used to rewrite the quenched 
partition function in a way that makes the frustration dependence explicit [ I ,  181. We 
may write, up  to an  infinite constant, 

where 4, = exp[(2ri/q)rp].  We can, moreover, use the gauge invariance of the spin 

t See also [ 10, 1 I ]  and [ 2 5 ] .  
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term to fix the spins Si = 1 and write, 

The quenched averages over thermodynamic quantities can now be performed via [5] 

Q =  P{4,IQ{dP}. 
{ b P }  

In particular, Q may be the free energy, -PF{&}  = In Z{d,,}. The probability weights 
for the frustration configurations can be obtained from the respective weights for the 
bond configurations [5] 

Again up  to an  infinite constant 

Assuming that the bonds are distributed independently, according to 

p ( ~ , )  = x t i ( ~ ~ - 1 ) + * ~ f  &(A,, -exp( l .x i /q) r )  (14) 
q - 1  r = l  

we may write 

where E is the number of edges on the lattice, and KF  and LY are found from (14) to 
be 

a = ( l - x ) / ( q - l )  

K ,  = In[x( q - 1 ) / (  1 - x)]. 

Substituting (14) into (13 )  and comparing with (1 1 )  we obtain, 

- ZKb{4P} 
p { 4  1) -zKF{4 I}’ 

(16) 

(Notice that here we use the sets { d,} and { rp} interchangeably.) Furthermore, using 
the duality relation, (6), we have, 

In particular (see appendix, (A10)) 

where the right-hand side is just the order parameter for a uniform Potts model at the 
effective coupling constant z ( K , ) .  The frustration system is then seen to have a 
frustration-dissociation transition [5] at the critical temperature of the Potts model 
given by the self-duality relation k (  K )  = K. The probability of encountering isolated 
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frustrations vanishes above some critical concentration x,, or, for K , >  K F ( x , ) .  Using 
(16) and (7) we find 

xc = q-l '? .  (20) 

For q = 2, this result reduces to that obtained by Schuster [SI for the Ising model. 
Notice that the transition is first order for q 3 4. 

The free energy of the quenched random model, 

- P F ( K ,  X I  4 2  P { 4 p }  In Z{4pI 
{ & }  

can now be written in terms of the correlation functions of the Potts model: 

The free energy as a function of the concentration x will have singularities at x ,  coming 
from the singularities of the correlation functions in (22), at  the Potts critical point 
I ? ( X , ) ,  independently of the temperature, i.e. K .  

3. The phase diagram 

It is interesting to compare x, with the value xo of the concentration of ferromagnetic 
bonds at which the frustrated plaquettes percolate, suppressing the transition tem- 
perature for the order-disorder transition in the Potts model to zero. For q = 2 ,  
Vannimenus and  Toulouse [8] have obtained the numerical value of xo = 0.91 for the 
square lattice. For general q we may get an approximate value by calculating the 
corresponding quantity for the annealed random vector Potts model. To this end we 
have generalised the de-decoration transformation of Syozi [6] for the Ising model. 
We first replace each bond on the square lattice by a set of decorated bonds in parallel, 
as shown in figure 1. Each of the intermediate spin sites may be occupied exclusively 
of the others. Introducing a chemical potential 5 for the occupation of the first 
intermediate site giving rise to an effective ferromagnetic interaction, 

x =  a In Slat. (23) 

Performing the summations over the intermediate spins, the grand canonical partition 
function is found to be 

Z = exp( E C ) Z (  K )  

where E is the number of edges on the underlying lattice, C is the free energy per 
bond contributed by the intermediate spins, Z (  K )  the partition function of the uniform 
Potts model on the underlying lattice, and C and K are given in terms of 6 and the 
coupling constant on the decorated bonds, L. The critical value of x is then calculated, 
as a function of L, the coupling constant for the annealed vector Potts model, from a 
knowledge of the critical values of K and 

e = E- '  a In Z ( K ) / a K  

the nearest-neighbour correlation function of the underlying Potts model [ 191. The 
calculation reduces exactly to that of Sarbach and Wu[7], who treated the annealed 
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0 K 0 

Figure 1. Bond decoration scheme for the annealed random Potts model. The partition 
function for the decorated bond is 

random Potts model with a bond distribution given by 

p (  K )  = x6(  K - K O )  + (1 - x)6( K + K O ) .  

xo = E‘ = ;( 1 + q - 1 ’ 2 )  

The concentration xo at which the critical coupling L, -$ =C (T,+ 0) is given by 

(24) 

for q 4. (Above q = 4, the phase transition on the underlying lattice becomes first 
order, giving E (  T:) # E (  T i ]  thus yielding two limiting concentrations, which seems 
to be unphysical [7].) 

Comparing the numerical value [6,7] for q = 2, xo = 0.854, with the value from the 
Monte Carlo calculation [8] for the quenched system, we see that the annealed value 
is less than the numerical approximation to the quenched case. Comparing (22) and 
(24) we see that for q # 1 and  finite, 

x, i nnea led  

and probably this range of q. The phase diagram is shown 
qualitatively in figure 2. There is no possibility of the frustration-dissociation transition 
preceding the destruction of the ordered phase, thus giving rise to two different types 
of order. 

< x:uenched in ’ 

4. Remarks 

Our treatment in § 2 carries over immediately also to a random Z, ‘clock model’, with 

p X =  K (STA,,S,+cc). 
( V )  
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Figure 2. Schematic phase diagram for the two-dimensional quenched random vector Potts 
model on a square lattice. The value of I, is exact, whereas xo is obtained in an annealed 
approximation. 

However, for 4 > 4 this model is not self-dual, so that we have to look for other ways 
of locating the transition point than the self-duality relation [ 10, 111. For 4 > 4 the 
situation is more interesting with the appearance of a ‘massless’ intermediate phase 
between the ordered and disordered phases [ 10, 1 11-here, a region where the probabil- 
ity of finding two frustrations at a distance 1 from each other decays algebraically with 
1. The transition between this and the ‘ordered’ state (at  a smaller concentration x of 
‘ferromagnetic’ bonds) is due to a condensation of ‘strings’ of bonds with A,, Z 1 [20]. 
Work is in progress to obtain analogous phase diagrams for frustrated spin and gauge 
Zq models [21, 2 2 ,  231 in higher dimensionalities. 
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Appendix 

The Whitney polynomial [19] expansion of (10) before taking the limit of infinite 
plaquette coupling is found to be 

where U = eK - 1, t‘ = eKr - 1, E is the number of edges on the lattice. 
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G = graphs on the lattice consisting of bonds and  vertices which are not incident 
to any bond 
G, = graphs on the lattice consisting of plaquettes 
b ( g )  = number of bonds in G 
p (  G,) =number  of plaquettes in G, 
c,( G, GP) = number of circuits in G completely filled (spanned) by plaquettes 
in G,. 

The sum I ; p e c .  runs over all circuits in G spanned by plaquettes in G,. 

lattice, 
Consider the unfrustrated random Potts model with a random field on the dual 

where S ; =  exp[(2xi/q)mi] and Yi i=  AZA,, with dual sites to the plaquettes p ,  q. 
The A,, are given by (5),  and we chose the I i =  A,*. The Hamiltonian is also invariant 
under the transformations in (3) and (4). The partition function has the graphical 
expansion 

where U ' =  e'- 1, w = eh - 1. 6 and G, are dual graphs to G and  G,, obtained 
respectively by ( i )  placing bonds rotated by 90" on links not occupied by bonds in G, 
and ( i i )  placing points at the centres of plaquettes not occupied by plaquettes in G,. 

m = number of connected parts in d that d o  not have any vertices in common 
with .Gk 
m = c,(G, G,) 
b ( 6 )  = E - b(G)  
p ( G , )  = N - d G , ) .  

Notice that the right-hand side of (A3) does not depend upon { r p } .  In fact, the model 
in (A2) is a generalised Mattis spin glass. With the redefinition 

A,,S;= T ;  (A41 

the Hamiltonian becomes 

, 
where l-"= 1. This model therefore has a phase transition at kc given by e'c- 1 = ql" 
for h = 0. 

(1)  Consider the expectation value 

The prime indicates a restriction to graphs such that the site i is part of a connected 
subgraph with at least one vertex in common with the graph G,. With r,, # 0, and  
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using (AI) ,  (A3) and (A6),  we find 

where p is dual to r, given that u‘u = q, uw = q, or 

R = - l n (  eK - 1  ) 
h = - l n (  eKp - 1 ). 

e K + q - l  

e K p + q - l  

The duality relation given in (A8) is already well known for the uniform lattice [19] 
and has also been derived for the quenched random Potts model by Jauslin and 
Swendson [24], but their derivation holds only in the case of positive random couplings, 
whereas here we have included ‘non-ferromagnetic’ interactions. 

Notice that from (A9) we have limK,+nc h = O .  Thus, 

where the RHS is the order parameter (‘magnetisation’) for the uniform Potts model 
in zero field. (We have used equation (A4).) Note also that the configuration with a 
single frustration as above calls for the insertion of an infinite number of ‘dislocations’ 
[17] going out to the edge of the lattice, and therefore cannot be arrived at using the 
results of [ 171. 

(2) Consider the case rp, rq # 0, all other r, = 0. 

Z K , K p { r p )  rq # O ;  rr 0, s # p ,  q }  

The restricted graphical sums are defined so that 

connected graph in G,, spanning a closed circuit in G ;  

circuits in G ;  

(A) the sum is over all graphs such that the plaquettes p ,  q fall within the same 

(B) p and q fall within different connected graphs in G,, both spanning closed 

(C) either p or g fall within such graphs; 
(D) neither p nor q fall within such graphs. 

6 ( r p )  = 6 ( r q )  = 0 by hypothesis. Thus we have, 
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Now consider the correlation function in the dual system, 

where - - i b i 6 ) , + , p ( G h )  m ( e . G K )  
9 

- 
=fi,c, - 

and the restricted sums are over graphs 6, Gk such that: 

in common with G,; 

points in common with Gk : 

vertex in common with Gk ; 

common with Gk. 
Equation (A13) becomes, 

(A) ;,j fall on the same connected subgraph in 6. This subgraph has no vertices 

(6) ;,j fall on different connected subgraphs of 6, neither of which have any 

( c )  ;, J fall on different connected subgraphs of 6, one of which has at least one 

(6) i,J fall on connected subgraph(s) of 6 that has (have) at least one vertex in 

Now observe that the sets of graphs A, B, C . . . are dual to A, 6 , .  . . . Using the duality 
relations (A8),  (A9), and (A12) we obtain 

+ ( 4  - 2 ) Z , K , , { r p  # - rqr  = 0; s f p ,  41). (A151 

The value of Z, does not depend on the absolute values of rp, rq, but only on 6( rp + r q )  
and 6( r p ) ,  6(  rq) ,  where the 6 is the Kroenecker delta. 

Explicitly recalculating the graphical expansion for 

( c ( q6Ti,r - 1 )( qaTj,r - 1 1) = q(q6Tt, T, - 1) 
r 

we obtain the result given in (9). 
(3) The  three-point correlation function is found to give, 

1 
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x [ ( q - 2 )  Z K, K, { rp + rg + r, = O ; rp + rq # 0, r4 + r, # 0, rp + rs # 0 }  

+ ( q - l ) ( Z , , , p { r p + r q + r s  $0 ;  r p + r q  =O}+permutations) 

+ ( q2 - 6q + 6 ) ~  K , K , {  rp + r4 + r, z 0; rp + r4 # 0, r, + rq f 0, rp + r, # 011, 
( rp. r4, r, # 0, r,  = 0, t # s). 

References 

[ l ]  Fradkin E, Huberman B A and Shenker S H 1978 Phys. Rev. B 18 4789 
[2] Toulouse G 1980 in Recent Developments in Gauge Theories ed G 't Hooft et al (New York: Plenum) p 331 
[3] Toulouse G and Vannimenus J 1980 Phys. Rep. 67 47 
[4] Toulouse G 1977 Commun. Phys. 2 115 
[ 5 ]  Schuster H G 1979 2. fhys .  B35 163 
[6] Syozi I 1972 in Phase Transitions and Critical Phenomena vol 1, ed C Domb and M S Green (London: 

[7] Sarbach S and Wu F Y 1981 Z. Phys. B44 309 
[8] Vannimenus J and Toulouse G 1977 J. Phys. C :  Solid State Phys. 10 537 
[9] Griffiths R B 1969 Phys. Rev. Lett. 23 17 

Academic) p 270 

[lo] Cardy J L 1980 J. Phys. A: Math. Gen. 13 1507 
[ l l ]  Alcaraz F C and Koeberle R 1980 J. Phys. A: Math. Gen.  13 L153 
[12] Nishimori H and Stephen M J 1983 Phys. Rev. B 27 5644 
[13] Erzan A 1984 fort .  Phys. 15 9 
[14] Kadanoff L and Ceva H 1971 Phps. Rev. 8 3  3918 
[15] Kogut J B 1980 fhys. Rep. 67 67 
[16] Alcaraz F C and Tsallis C 1982 J. Phys. A: Math. Gen. 15 587 
[17] Wegner F J 1973 Physica 68 570 
[18] Balian R, Drouffe J M and Itzykson C 1975 Phys. Rev. D 11 2098 
[19] Wu F Y 1980 Rev. Mod.  Phys. 54 235 
[20] Einhorn M B, Savit R and Rabinovici E 1980 Nucl. Phys. B 170 16 
[21] Kogut J B, Pearson R B, Shigemitsu J and Sinclair D K 1980 Phys. Rev. D 22 2447 
[22] Kogut J B and Sinclair D K 1981 Phys. Rev. D 23 2967 
[23] Masperi L and Omero C 1982 Nucl. fhys. B200 121 
[24] Jauslin H R and Swendson R H 1981 Phys. Rev. B 24 313 
[25] Wu F Y and Wang Y K 1976 J. Math. fhys. 17 439 


